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Chemical shifts of ground-state energies and g factors of acceptors X in Sior Ge hostcrystals
are analyzed within the framework of effective-mass theory. The unit cell centered on the

impurity is regarded as a unit cell of a hypothetical SiX of GeX crystal.

The differences in

energy levels of valence and conduction bands of this hypothetical crystal at I', X, and L are
calculated according to the semiempirical spectroscopic rules developed by Phillips and Van

Vechten to describe levels of zinc-blende crystals.

These energy differences are compared

with those of the host crystal and are used to renormalize effective masses in the impurity

unit cell.

Rough estimates then show that this approach yields chemical trends in good agree-

ment with experimentand explains several quantitative features of the data that cannot be ex-
plained by qualitative models based on ionic radii or electronegativity differences.

I. INTRODUCTION

In two preceding papers, !'# an analysis of the
chemical shifts of ground-state energies of donor
impurities in Si, Ge, and GaP has been made based
on a spectroscopic theory3'* of the covalent bond in
tetrahedrally coordinated AYB®-¥ semiconductors.
Both experiment and theory® agree that the effec-
tive-mass approximation (EMA) of a point-charge
impurity embedded in a dielectric quasicontinuum
gives an excellent account of the energies and wave
functions of excited states of shallow impurities in
semiconductors. However, there is now abundant
experimental evidence to show that the EMA fails
both quantitatively and qualitatively to account for
ground-state energies. Quantitatively there is the
obvious point that ground-state energies vary from
one donor impurity to another (or from one accep-
tor impurity to another) in the same host crystal,
whereas according to the EMA the binding energies
of all states are determined only by properties of
the host crystal.

It has been customary® to explain these “chemical
shifts” in terms of a “central cell correction, ” the
breakdown of the hydrogenic approximation for the
effective potential in the atomic cell containing the
impurity. This brings us no closer to understanding
ground-state energies, but it has the convenient
feature of relegating the problem to another dis-
cipline which already has its own full quota of un-
solved problems. The qualitative value of this clas-
sification, however, became doubtful when Hopfield
and Thomas® discovered that even in III-V semicon-
ductors, isoelectronic impurities (such as N in
GaP) could bind electrons and holes although the

effective impurity potential was zero in the EMA,
Thus, the EMA is qualitatively wrong in this case,
and it appears that we must face up to the problem
of shallow impurity states associated with donors
and acceptors as well as isoelectronic impurities
or isoelectronic-impurity complexes (e.g., CdO
in GaP).®

The first point to recognize is that in the presence
of a short-range potential only, one would not gen-
erally expect to find shallow impurity states. Either
the potential is not strong enough to produce any
bound states, or else it is likely to produce states
with a binding energy which is a significant fraction
of the energy gap. In practice, unless the difference
in electronegativity is very large (e.g., O in GaP),
one usually finds small binding energies comparable
to EMA binding energies for donors on acceptors
and of the same order of magnitude for isoelectronic
complexes.

The explanation’ for this behavior, which for
some time made the EMA appear to be more ac-
curate than it really is, is that because most semi-
conductors are highly polarizable, a strain field
develops around each impurity to prevent the ac-
cumulation of electronic charge much above or more
below the requirements of the valence bonds of the
host lattice.

In the case® of shallow donor impurities in Si or
Ge, the central cell corrections AE,= E} - E} do
not vary monotonically with impurity size. Here
E{ is the donor ground-state energy and E¢ is the
EMA ground-state energy. Instead, AE, is found
to reach a minimum value at Sb in both Si and Ge
host crystals. This suggested to us that one could
account!’? for the chemical shifts in AE, primarily
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as an effect arising from differences between im-
purity-host bonds and host-host bonds. These dif-
ferences can be characterized through the spectro-
scopic theory®'* of bonding in these crystals. It is

a characteristic feature of the theory, which involves
no adjustable parameters, that these differences

are minimal for Sb in both Si and Ge.

In the case of shallow acceptor impurities, the
central cell corrections AE,=Ej- Ej do vary mono-
tonically with impurity size. This suggests that the
situation for hole wave packets made up of states
localized near the valence-band edge at I is differ-
ent from that of electron wave packets formed near
the (100) conduction-band minima in Si, and the
(111) conduction-band minima in Ge, or the {000)
conduction-band minima in GaAs. However, and
this is basic to our dielectric approach, if these
mechanisms involve mainly polarization processes,
they will involve both valence and conduction bands
in each case, although the carriers in question may
be either electrons or holes. Thus, we have one
set of mechanisms for both donors and acceptors.

II. MICROSCOPIC AND MACROSCOPIC ASPECTS

In order to explain chemical shifts AE; or AE, in
ground-state binding energies, one must introduce in
into the theory at some point specific properties of
the host atoms and the impurity atoms. The great
strength of the macroscopic or continuum approach
is that by forming wave packets near band edges,
one needs only the curvatures or effective masses
of the host crystal to solve a hydrogenic wave equa-
tion for the envelope wave-packet amplitude. These
masses have been measured in some crystals by
cyclotron resonance, so that one does not have to
solve the crystal Schrddinger equation to find Bloch
functions and energy bands.

At the time that the EMA was being developed
formally (largely 1951-1955), very little was known
about the energy bands of semiconductors. Today,
the energy bands of these crystals are known with
great accuracy, thanks largely to theoretical cal-
culations using pseudopotentials calibrated against
detailed measurements of fundamental optical spec-
tra.® Moreover, the spectroscopic theory of chem-
ical bonding has been extended to predict interband
energy differences at I'y X and L with an accuracy
that surpasses that of pseudopotential calculations
yet utilizes fewer parameters.

The program of this paper is to combine the
macroscopic EMA theory with microscopic band
theory to identify the physical mechanisms which
determine chemical shifts. We have found that ac-
ceptor binding energies and g factors in Si and Ge
provide the best field for our analysis. In Sec. III,
we review the elements of EMA theory which are
needed in our calculations, and in Sec. IV present
the microscopic information which is needed. The
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remaining sections demonstrate how the combined
approach works and show which features of the ap-
proach are necessary to expain the experimental
data.

III. EMA BACKGROUND

The energy bands of Ge as calculated by the semi-
empirical pseudopotential method® in the absence of
spin-orbit effects are shown in Fig. 1, and those
of Si are shown in Fig. 2. The valence-band max-
imum at k=0 is threefold orbitally degerate and is
labeled I'y;.. With the addition of spin, these p-like
states split into Iy (corresponding to J=3) and T,
(corresponding to J= 3) with a spin-orbit splitting
3x, where AL-§ is the spin-orbit interaction. The
wave function ¥(7) of the impurity state can be
written® in the EMA as

6

\Il(r)=jzl F,R)2,[) , (3.1)
where the ®,(F) are suitable linear combinations of ,
the Bloch states associated with I'; and I';. The
envelope functions F j(ﬁ) depend on the discrete lat-
tice coordinate R and have a hydrogenic form. Ex-
plicit forms suitable for variational calculations
have been given by Schechter,® Mendelson and
James, ! and Suzuki, Okazaki, and Hasegawal!!
(SOH). We quote here chiefly formulas taken from
SOH, who used the most recent cyclotron-resonance
parameters and give the most complete discussion
of Zeeman effects. In Si these parameters corre-
spond to the case!?'!* B<0.

The effective-mass Hamiltonian can be written in
a simple form using the effective-mass momentum
and orbital and spin angular momentum operators
P, T, and &:

Heff ma\ss:Aﬁz - 3B[(L;2¢ - %Lz)-i' c.p. ]

Tis

(o,t;,o) (0,00) (ié 0) (é)';yo) (0,0,0)

k
FIG. 1. The energy bands E,(k) of Ge as calculated by
the semiempirical pseudopotential method [ Brust, Phillips,
and Bassani, Phys. Rev. Letters 9, 94 (1962) ].
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N=F-G+H, (3.7)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Here F and H are given by
7% (T, 1] Tyge) |2
F=o- T (3.8a)
2 > 2
Tis Hl ﬁ !<F1§!p l l"251> I X (3. 8b)

- ey

T2y’

I I
(10,0 (33,0 (3,0 (0,00)

) (000)

FIG. 2. The energy bands E, @) of Si as calculated by
the semiempirical method [Burst, Cohen, and Phillips,
Phys. Rev. Letters 9, 389 (1962) ].

-N[(L,Ly+ L,L, )PP +c.p.]
(3.2)

where c.p. denotes cyclic permutations. If B=N
=A=0, Hgs mass reduces to the Hamiltonian of a
hydrogen atom with a Coulomb interaction reduced
by the reciprocal of the electronic dielectric con-
stant €;' and effective mass m*=1/24.

Because of the terms B and N in (3. 2), even the
1s-like ground state has some d-like components.
According to SOH, numerical solution of the wave
equation obtained from (3. 2) gives the ground-state
energies for Si and Ge shown in Table I. We can
also use their wave functions to calculate the prob-
ability that an electron will be found in the unit cell
of volume q® centered on the impurity atom:

+ AT F-1) - eBfegr

P.=%|Fy(0)]%° (3.3)

SOH denote the normalized amplitude of the s-wave
component of Fy(R) by ¢, and its hydrogenic radius

by #;. Thus, from their wave functions with ¢,
=0.93 in Si and 0. 86 in Ge, one finds

Pi=(a/r)’ct , (3.4)
where the superscript labels acceptors. Values of

P, calculated from 7, = 154 in Si and 38 A in Ge are
also given in Table I.

To connect the EMA with band theory, we need to
know the relations between A, B, and N and the band

structure. These relations are!?
A=1+ 3(F+2G+2H,) , (8.5)
3B=F+2G-H, , (3.6)

“om E,
Here
Ey=E(Ty ) - E(Ty)
and
Eq=E(Ty5) = E(Tys)

in the notation of Van Vechten.!* The term G con-
nects I'y;, with I'y,, which is higher in energy and
has a smaller matrix element, making G a factor

of 10 smaller than F and H,, and hence negligible
for our purposes here. As discussed previously, '*
effective-mass data show that the interband momen-
tum-matrix elements in (3. 8a) and (3. 8b) vary
slowly from one tetrahedrally coordinated AYB%-¥
crystal to another. Our interest therefore focuses
on the interband energies E, and E,.

The g factor for the Zeeman effect is, in general,
quite complicated. SOH give formulas for two
limiting cases corresponding to 3B=N (which holds
approximately for Ge) and to A =0 (which is fairly
good for acceptor states in Si; see Ref. 11, p. 939).
When only the s-wave contribution to Fo(ﬁ) is re-
tained, i.e., cy=1, these reduce to

g=-2x=%1+3F-3H,) , (3.9)

which is also the free-hole g factor.
IV. HYPOTHETICAL BAND STRUCTURES

In the construction of a model for chemical shifts,
the chief problem is to introduce the properties of
the impurity into the theory in a way consitent with
the properties of the electronic structure of the
host lattice. There are a number of solutions to the
impurity problem which, although formally correct,
do not meet this requirement and must therefore
be discarded. For example, one can expand the
impurity wave function in Wannier or atomic or-
bitals, '8 but a few of those basis functions do not
give an accurate representation of the wave functions
of the semiconductor host crystal. ® Thus, with en-
ergy gaps much smaller than valence bandwidths,

TABLE I. Effective-mass parameters in Si and Ge.
The values of Ef and P, are taken from Ref. 11.
Crystal A E} P,
(meV) (meV) (109
Si 30 35.7+0.2 40 =x1.5
Ge 200 10.0+0.1 2.5+0.1




as we have in many semiconductors, we cannot hope
for success from this approach.

In discussing donors, we found it useful® to con-
sider the average energy gap E, of an impurity-host
bond compared to host bonds. More generally, one
can imagine constructing a hypothetical crystal AX
having the sphalerite or zinc-blende structure,
where X is the impurity atom and the A atoms are
its four nearest neighbors. For a S donor replacing
P in GaP, for example, one could consider the en-
ergy bands of a hypothetical GaS crystal. For such
a crystal, one could calculate not only E, but also
the interband optical energies E;, Eg, E;, Ej, ...
discussed by Van Vechten.!* He has given rules for
calculating these energies in sphalerite crystals
based almost entirely on the values observed for
diamond-type crystals and the valences and atomic
radii of the constituent atoms. We propose to use
these rules to obtain the band structures of our
hypothetical AX crystals.

It may be objected that Van Vechten’s rules are
designed from atom pairs AYB®¥ so that the net
core charge per atom pair is also eight, and the
number of s-p valence electrons per atom pair is
also eight. The latter, but not the former, condi-
tion is satisfied for AYX%"! pairs. However, we
feel that for substitutional impurities the rules should
give useful results because the impurity as well as
host atoms see structurally similar tetrahedrally
coordinated environments. Moreover, the algebraic
simplicity of the rules guarantees the kind of uni-
formity which is necessary for analyzing chemical
trends.

As an example, consider Sb in Si. From a table
of covalent radii” we estimate that dg,. g, is 2.578 A
compared to d =2.346 A in Si. (In this case, no cor-
rection is needed for core-effect expansion because
only one of the atoms exhibits this effect. When
both do, the smaller expansion parameter should be
deleted. ') We can now calculate E, ;, where
i=0, 0', 1, 2, from

Ey,1=(E,, )5 (2.578/2. 346)° | (4.1)

where the values of (E,, ;)s, and s, are given in
Table II of Ref. 14. In this way, we obtain E, ,
=3.2eV, E,(=2.8¢eV, E, =2.9eV, E,,=3.6eV.
Next, we compute C, the ionic energy, by arguing
that this must be about half as large in a Si-Sb bond
as in an Al-Sb bond. [We could also have used Eq.
(1.5) of Ref. 14 with b=1.5, but we prefer to rely
on experiment whenever possible. ] This gives
C=1.5eV. Finally, we use from Ref. 14, Eq. (3.1),
C, Ep and E, , to compute E; and E, and Eq.
(8.7), C, Epoy Ep1 Aayy AEy, and AE; from Table
II of Ref. 14 to compute E; and E,. The results
are: Eg=0.2eV, E;=3.2eV, E,=2.0eV, E,=3.9
eV. The complete results for group-III acceptors
and group-V donors are shown in Table II for Si and
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TABLE II. Interband energy differences in eV in hypo-
thetical SiX crystals, calculated using the methods of
Ref. 14.

X E, E, E} E,
si 4.1 3.6 3.4 4.5
P 4.6 4.1 3.8 4.9
B 8.4 6.4 4.6 8.4
Al 4.2 3.7 3.5 5.0
As 2.9 3.1 3.5 4.5
Sb 0.2 2.0 3.2 3.9
Bi -1.5 1.2 3.0 3.8
Ga 2.9 3.3 3.6 4.6
In 0.6 2.1 3.2 4.0
Tl ~0.4 1.75 3.2 3.9

in Table III for Ge.

There are several remarks that should be made
at this point. Although Van Vechten’s rules may
appear novel, it has been demonstrated!* that they
describe interband structure in AYB% ¥ semiconduc-
tors more than twice as accurately as empirically
adjusted pseudopotential band calculations do. (The
respective rms errors are about 0.2 and 0.4 eV,
respectively.) Thus, all the chemical shifts in the
host crystals are given accurately. Moreover, in
a few minutes of hand calculation, one does the
equivalent of an entire computer band calculation,
using rules of such algebraic simplicity as to as-
sure the uniformity needed for discussion of chem-
ical trends. Finally, if we compare the values of
Eqand E; in Sb:Si (0.2, 3.9) with pure Si (4.1, 4.5),
we see immediately the great drop in E,/E, which
is characteristic of the heavy metal Sb and which
occurs even more dramatically in the Pb row atoms.
(The parameters for the latter are given in the Ap-
pendix to Ref. 18.)

V. ANALYSIS OF AEq(X) IN Ge AND Si

It has long been customary® to regard the chem-
ical shifts AE(X) as associated with a potential 6V
localized in the central atomic cell of the X im-
purity. The Fourier transform of this potential will
have large components §V;(X) for < %G, where
G is an average diameter of the Brillouin zone.

One would therefore expect 6V, regarded as a per-
turbation, to mix into ¥,(¥) Bloch states from the
low-lying conduction bands throughout the Brillouin
zone. The analysis of chemical shifts for acceptors
given in this section shows that this is not the case.
The analysis leads to quite a different physical
model for the important part of 6 V(X) which is dis-
cussed at the end of this section.

In Table IV, the spectroscopically measured
values®® of AE,(X) in Ge are listed for X=B, Al,

Ga, In, and Tl. These may be compared with the
values of E,, E;, E;, and E, listed for GeX in
Table III. Note particularly, the variation
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TABLE III. Interband energy differences in eV in hypo-
thetical GeX crystals, calculated using the methods of

Ref., 14,

X E, E, E} E,
Ge 1.0 2.2 3.14 4.1
P 2.9 3.4 3.7 4.8
As 1.2 2.4 3.4 4.35
Sb 0.7 2.0 2.9 3.7
Bi -2.1 0.9 -2.8 3.4
B 2.4 3.4 4.3 6.1
Al 2.35 3.0 3.4 4.3
Ga 1.2 2.5 3.4 4.35
In 0.5 2.0 3.0 3.7
T -1.2 1.8 3.25 3.5

AE,(In) - AE,(Ga)=0.6 meV
compared to
AE,(T1)- AE,(In)=1.5 meV .

Among the four interband energies listed for the
hypothetical GeX band structures, only E, shows
this qualitative trend. Indeed the other interband
energies show a larger shift from In to Ga than from
TI to In, whereas the shifts in E, and AE, are about
2.5 times larger in the latter case than in the
former.

In Table V, the spectroscopically measured
values® of AE,(X) in Si are listed for X=B, Al, Ga,
and In. Here the striking experimental fact is the
large shift in AE,(X) from X=In to X=Ga. Again
among the four interband energies listed for the
hypothetical SiX band structures, only E, shows
this qualitative trend.

The interband energies E,, E,, E,, and E, all de-
scribe direct or E—conserving optical transitions of
the “vertical” type shown in Figs. 1 and 2, How-
ever, using Van Vechten’s rules,!* one can also
compute indirect gap energies between I'y;. and L,
or X, conduction-band states. These also do not
show the required chemical shifts for heavy im-
purities (T1 in Ge or In in Si).

The foregoing analysis demonstrates that varia-
tions in

Ey=E(Ty) ~ E(Ty)
are responsible for an important part of the X de-
pendence of AE,(X). The analysis can be made
more quantitative by making the Taylor-series ex-
pansion

E}(X)=E+ SES+ a,AE(X) + a2[ AE(X)F , (5.1)
where
AE((X)=Ey(AX) -~ Eo(AB) , (5.2)

assuming that X has substituted for B. The phys-
ical meaning of the parameters is that 5E] is the
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central-cell correction which would be present in
the absence of any difference in FE, in the AX and
AB crystals; it represents an average correction
coming from differences in all other energies, a
difference which depends so little on X that it can
be treated as a constant. The term which is linear
in AE, is the one of major interest; it has the na-
ture of a mass renormalization effect (see below).

The values of 6E§, a,, and a, for Si and Ge are
listed in Table VI. The results obtained from (5.1)
are compared with the experimental values in
Tables IV and V. For X in Ge, the agreement is
excellent. For Si, the agreement is good, except
that the actual shift for Al to Ga is ten times smaller
than the predicted shift, This will be discussed in
Sec. VI.

We do not attach much meaning to the value of a,,
which is included in the expansion (5.1) to give good
values of SE§ and a,. The ratios of the two latter
parameters in Si compared to Ge are both about 25.
According to Table I, the ratio P,(Si)/P,(Ge) is
about 16. Thus, both 3E{ and a, scale approximately
with the macroscopic parameter P, although there
is some evidence for nonlinearity in the greater
values of 6E§ and ¢, in Si.

Now we turn to the physical meaning of the terms
8E} and a,AE, in Eq. (5.1). At first sight, the ap-
pearance of these terms is paradoxical, because
they seem to imply that the perturbation associated
with the impurity has a very long range. Indeed, as
we shall see in Sec. VI, one may formally interpret
the term a,AE, as a mass renormalization term.
Such a term is, however, almost entirely absent for
excited p states of donors,? and it is therefore dif-
ficult to see how it could be present for the ground
states discussed here.

This paradox may be developed further. Suppose
one rejects the analysis given here and instead re-
tains the Kohn-Luttinger model® based on a strictly
hydrogenic potential for »2a, where a is of order
the atomic radius. Then the central-cell correction
should be proportional to Q(X)/Q(host), where Q(X)
is the atomic volume calculated from a table of co-
valent radii.” These ratios are shown in Tables IV
and V, and it is clear that they do not give a satis-
factory account of experimental trends in Ef(X).

In analyzing interband spectra in more than 20
semiconductors,® it has been our experience that

TABLE IV. Acceptor binding energies for X in Ge.
Experimental data are from Ref. 18, theoretical values
from Eq. (5.1).

Ge: X B Al Ga In T1
E} (X)gyp (meV) 10.5 10.8 11.0 11.6 13.1
E} (X theory (meV)  10.7 10.8 11.1  11.6 13.0
Q(X) /9 (Ge) 0.34 1.00 1.00 1,50 1.69
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TABLE V. Acceptor binding energies for X in Si. Ex-
perimental data are from Ref. 19, theoretical values
from Eq. (5.1).

Si: X B Al Ga In Tl
E} (X) g (meV) 44 69 72 155 e e
EF (X) theory (meV) 52 69 92 153 188

Q(X)/Q (host) 0.39 1.15 1.15 1.73  1.94

arguments based on chemical trends are generally
much more reliable than ab initio theoretical models,
no matter how carefully the latter are constructed.
We are therefore reluctant to ignore the good agree-
ment demonstrated here between AE$(X) and

AE((X).

To resolve this paradox, it is helpful for us to
note that the heats of formation of tetrahedrally co-
ordinated semiconductors have been shown!® to de-
pend very sensitively on E;. These heats of for-
mation involve averages over the entire valence
bonds throughout the Brillouin zone, yet the neigh-
borhood of k=0 is found to play a particularly im-
portant role when E, is small. Because the wave
packets of holes bound to acceptors are localized
near I'y;., the admixture of states near TI'y, into
states near I'y;. may be expected to exert a strong
influence on AE,(X). Within the framework of the
EMA, in the impurity atomic cell one might replace
the periodic part of the Bloch function /(7). of the
AB host crystal by #AX(r), the periodic part of the
Bloch function in the hypothetical crystal AX. This
would obviously lead to matching problems at the
radius of the impurity cell and would tend to gen-
erate terms of the kind contained in (5. 1).

VI. OPERATOR FORMALISM

In Sec. V in order to render the numerical analy-
sis simple, attention was focused on AE,(X). How-
ever, if the position of the I'y. level is important,
then so should the position of the I';; level be impor-
tant. Its effects are less striking because

AEO,= [EAX(Fls) - EAx(rzs')]

- [EAB(I‘IS) - EAB(rzs')] (6.1)
is usually smaller than AE, and in Ge, E,<< E,. In
the case of Si, however, E; and E, are comparable,
so that both should be important. Also compare
E,, E, for Al in Si (4.2, 3.5) with Ga in Si (2.9,
3.6). This reversal of levels will be used to explain
the smallness of Ef(Ga) ~ Ef(Al) noted previously.

A generalization of the effective-mass equations
(3. 8), which is in the spirit of our analysis of chem-
ical trends, is the following:

EF(X)= (12/2m)|(Ty | p| Tos) |2+ aAE, , (6.2)
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EoH,(X)= (h'z/Zm)|<1"15|p| Tps0) (6.3)

Here o and B are kinematic parameters to be deter-
mined empirically, and (6. 2) and (6. 3) are called
kinematic corrections to the EMA.

In principle, one should now repeat EMA calcula-
tions with a modified potential which for AE,=AE,
=0 will give rise to a ground-state energy Ej+ 5E}
in Si and Ge. (The potential may consist of the or-
dinary dielectrically screened Coulomb potential
plus a square well centered on the origin.) With
this potential, one can then calculate E{(X) for a
variety of values of the kinematic parameters o and
B until a good fit to experiment is obtained. Such
calculations lie outside the scope of this paper. One
can, however, use the modified potential and Egs.
(6. 2) and (6. 3) to make crude estimates of the
chemical trends of g factors of impurity states in
order to see whether these agree qualitatively with
experiment. These are known at present only for
acceptors in Si, but we will make very rough predic-
tions for Ge as well.

21 BAE, .

A. Acceptors in Si

We can compute 9E$ /A by first-order perturba-
tion theory using the wave functions and matrix
elements of the Hamiltonian given by SOH. For Si,
only ¢, and c,<cqy are large, so for the purpose of
making a rough estimate we write in Si

E§ = CBHy+ 2¢ ycoHy, (6.4)

and note that H, depends only on A and that Hy, de-
pends only on N. The accompanying matrix ele-
ments are u,, the s-wave kinetic energy, and u,,,
and s-d centrifugal term.

Both the basis function amplitudes ¢; and the
various matrix elements such as «, obviously depend
on the well depth of the central cell (which we as-
sociate with 8E§) and on changes in A, B, and N
through F and H,. In Si, in particular, SE§SEj.

This will increase the s-wave amplitude ¢, at the
expense of d-wave amplitudes such as ¢,, so that
from the EMA values'! ¢,=0.93, c,=— 0. 35 one
would guess that better values for Si (neglecting
changes in the effective values of A, B, and N)
would be ¢;=0.98, c,=~0.2. One would also expect
the Bohr radius 7, of the s-wave basis function to
be reduced by a factor of about v2 from the EMA
value of 15 A toabout 11 R, or close to the Bohr ra-
dius 7, of the d-wave function, which makes the pa-
rameter ¢ defined by SOH have the value 1. To

TABLE VI. Parameters for the Taylor-series expan-
sion (5.1).
Host E} (meV) SE} (meV) 10%ay 10%a,
Si 36 34 - 150 0.5
Ge 10.0 1.2 -3 1.4




4050 J.

TABLE VII. g factors for acceptors in Si. Experimen-
tal values from Ref. 22, Zgav=gn+%g1-

X & %gn Sav
B 1.21 1.22 1.21
Al 1.18 1.08 1.13
Ga 1.14 1.02 1.08
In 0.98 0.79 0.88
EMA (SOH) 0.97 1.02 1.09
Present theory 1.02 1.02 1.02

first order in c,, Eq. (22) of SOH then reduces to
(6.5)
(6.6)

gu=1%g.=g=-1.96k-0.1(2B+ 3N)
=0.56+0.46=1.02 .

The first term on the right-hand side of (6. 5) is the
s-wave contribution, the second term the estimated
d-wave one. According to Eq. (5.1), the kinematic
corrections should be minimal between Al and Ga.
The experimental values® for g, and 3g, (both of
which are equal to g when A is small) are listed in
Table VII. The average value of g, and 3g, between
Al and Ga is 1.10, in good agreement with (6. 6).
Also shown are the calculated EMA values of SOH,
which are too large and too anisotropic (g, #2g,)

because the d-wave amplitudes c;(i22) are too large.

Returning to Eq. (6.4), we estimate Hy and Hy,
in the presence of the modified potential without
kinematic corrections as follows. According to
SOH, in the EMA omission of the d-wave terms in
Si [principally the second term on the right-hand
side of (6.4)] reduces the binding energy by a fac-
tor of 3. This gives approximately

(6.7)

and since in the modified potential Ef=2E§, we ob-
tain

H02= -0. 3E3 3

Hy=1.5H (6.8)

which are consistent with ¢y, - 0. 2.

To estimate o and B in Si, note that EO' changes
by +3% on going from Al to Ga, while E, changes
by about — 30%. The two changes are in opposite
directions and must nearly cancel in their effect
on Ef(X) in order to explain the small shift in E{(X)
observed experimentally (Table V). Assuming for
qualitative purposes that a virial relation holds for
the kinetic and potential contributions to H,, we can
rewrite (6.7) and (6. 8) as

Hyp=~0.3E3(1+ 6N/N) s (6.9)

Hy=1.5EX(1+0A/A) , (6.10)

in the presence of kinematic corrections 64 and ON.
Substituting c,=0.98, c;=-0.2, (6.9), and (6. 10)
into (6.4) gives g

8Ef/E§=1.5(1+0A/A)+0.6(1+6N/N) . (6.11)
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From (3.5) and (3.7), this reduces to
E}X)/E§=2+(0.5/A +0.6/N)oF

+(1/A+0.6/N)6H; . (6.12)

Substituting 8F = a8E,/E, and 6H, = B5E,/E, from

(6. 2) and (6. 3), and setting 6E7=0 on going from Al

to Ga, we have
a(Si)=0.17p(Si) .

According to Table II, from B in In, E, changes
from 4.6 to 3.2 eV, giving AE,/E,~0.3. Similarly
E, changes from 44 to 155 meV, so that AE7(X)/
E}(Ga) ~1.5. Thus, (6.12) gives approximately

-1.5=(=0.3)a(-1.7+(-0.17)(a/0.17)(- 0. 3),
a=-3, B=-18 . (6.14)

(6.13)

Although these numerical estimates are quite
rough, they are sufficient to enable us to estimate
the chemical trends in the g factors g(X) listed in
Table VII. Using (3.9) and (6. 6) one finds approxi-
mately

8g=40F — $6H, - 0.25B 305N . (6.15)

Now, the first three terms on the right-hand side

of (6.15) approximately cancel because of (6. 13).
Within the accuracy of our calculations, this almost
gives 6g~0. We therefore estimate 5g(B) - 6g(In)
from (3.6), (3.7), and (6. 14) hoping to get the sign
right, One finds

8¢(B) - 6¢(In)=[~ 3(1.7)/3 - (- 18)0.3/3]
-%[-31.7)+ (- 18)0.3]

=0.08+0.34=+0.42, (6.16)

which is to be compared with the experimental value
(average of 8g, and %6g,) of +0.33. Considering the
substantial cancellations and crudity of the approxi-
mations made, the agreement with experiment is
more than satisfactory. Because O0F and 6H; enter
k and B only in the combination 8F — 6H, (which ap-
proximately vanishes), it is the term in 6N which
dominates 5g(X).

B. Acceptors in Ge

The case of Ge is simpler than Si in one respect
because the corrections to the EMA are 25 times
smaller. In another respect, however, it is more
complicated. The d-wave components of the EMA
solution found to SOH are large for c;, ¢3, ¢4, and
cs. We do not expect a/8 to have the same ratio
in Ge as in Si. A good guess is that

a(Ge) a(Si) Ey(Si) E,(Ge) 6.17)
B(Ge) ~ B(Si) Eo(Ge) Ey(Si) ’ :
a(Ge) _ o(Si)

B(Ge) =3.3 B(si) (6.18)
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In Si, we found that the effects associated with «
(changes in I',,) were comparable to those associated
with g (changes in I';;). This made E{(Ga) - E(Al)
ten times smaller than one would have expected from
a effects alone. According to (6.18), the a effects
should be about three times larger in Ge than the

B ones, so that the observed shift in Ef(X) should be
about two-thirds that predicted from « alone. This
is indeed the case experimentally, as can be seen
from Table IV,

In order to estimate g(X), we utilize Eq. (19) of
SOH and retain only terms containing ¢,. This gives
(again ¢~1)

g=—2kci+ B(5¢,+ cg)cy/V2 = 1.5k - 0.5B  (6.19)

using the values of c¢; given by SOH. From (3.9) and
(3.6), one finds

6g ~15(6F — 6H,)

~5a6E,/18E, . (6. 20)
From (6. 13) and (6. 18), one has
a(Ge) =0. 58(Ge) (6.21)

and on going from B to T1, E}(X)/E}(Ga) changes by
about 0.25. Meanwhile E, changes by — 3.6 eV and
E;by 1.0 eV. Because ¢y, ...,C4 are all appreciable,
E{(X) depends on A, B, and N. For the purpose of
making a very rough estimate [justified by the ab-
sence of experimental data for g(X) in Ge], assume
the dependence given in (6.12). Then « can be
estimated from

-0.25=(-0.04-0.02)a(-3.6)

+(-0.07-0.02)2a(-1.0), (6.22)

a(Ge)=-0.6, p(Ge)=-1.2 . (6.23)

Substituting (6. 23) into (6. 21) and using 6Ey/E,

=~ 3 on going from B to T1, one guesses 6g ~0.5

on going from B to Tl. According to the EMA values
for g, and g, given by SOH, g,, should vary from
about — 1.5 for B in Ge to — 1.0 for Tl in Ge. These
estimates are very rough.

VII. DISCUSSION

As stressed in the Introduction, the aim of this
paper has been to indicate how much one might
hope to gain by combining the results of modern
energy-band theory with classical wave-packet anal-
ysis as it appears in the EMA. To this end, we
have carried out in Secs. V and VI several highly
simplified calculations to show what can be expected
from the combined theory. A number of encourag-
ing results have been obtained. These are (a)
chemical trends of E¥(X) and g(X) in Ge are probably
dominated by shifts in Eq(GeX); (b) chemical trends
of E¥(X) in Si are influenced about equally by shifts
in E,(SiX) and E((SiX), or by interactions of Iy
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with T and Ty, respectively; (c) other things
[E,, E, in the host crystal and AE,(X), AEy(X) in
the hypothetical crystal] being equal, interaction
with T'y5 is about five times more important than in-
teraction with I'y;,, In Si, one has approximate
equality between E, and E,, but the total change
AE,(X) on going from X=B to X=1In is about five
times smaller than AEy(X), so that in Si, chemical
trends are actually affected about equally by I'y; and
Ty, as mentioned in (b). (d) From the over-all
trends in Ef(X) in Si, one can predict the trends in
g(X). In spite of considerable cancellation between
the Ty, and T'y; terms, the results are in good agree-
ment with experiment.

These qualitative successes in separating the ef-
fects of I'y, from those of I';; prompt one to inquire
further concerning the rather arbitrary separation
of kinematic and potential effects we have made.

It is quite clear that the mass renormalization we
have used is highly artificial and is valid only in
the region of the impurity itself. However, so long
as we calibrate o and g by analyzing linear shifts
in E{(X), no great error is made in this way.

If one wishes to undertake more elaborate calcu-
lations of the type carried out by SOH in the EMA,
one would notice that the effects of changing E, and
E,, which admix T, and I'j; into I,;» are analogous
to cubic phase shifts 8, and 5,5 in the envelope
functions F;(R) which are the generalization to the
crystalline situation of spherical phase shifts §,
associated with scattering from a spherically sym-
metric potential. In the crystalline case, one can
imagine drawing a unit cell of volume ;a® centered
on the impurity whose edges pass through the cen-
ters of the four nearest neighbors. One-quarter of
each of the four nearest-neighbor’s pseudopotentialsi
lies inside this unit cell, the remainder outside as
part of the host crystal. Expand the former in
tetrahedral harmonics. The first-order effect
mixes I'y; into I'y;,, while one needs combined strain
and spin-orbit effects to mix I'y, into I'y5., since in
the tetrahedral group I'ys, T'y5, and Iy, transform
as xy, xy, and 1, respectively. This explains (c)
above, i.e., why interaction with I';; is much more
important, other things being equal, than interac-
tion with T',.. It also explains the signs of o and 8,
which depend on whether one is attracting electrons
or holes.

Further discussion of this formalism would entail
calculations which lie outside the scope of this paper.
However, we believe that Ey(X) and E,(X) should
serve as useful calibrations for chemical shifts in
8y and dy5.

VIII. OTHER APPLICATIONS

Included in Tables II and III are values of E,, Eé,
E,, and E, for donors in Si and Ge. In an earlier
paper, ! we compared trends in Ef(X) in Si and Ge
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with trends in E, (X), which is almost the same as
E,(X), the energy gap between conduction-band
states near X; and valence-band states near X,. Ac-
cording to the point of view developed here, this is

a good approach for Si, where the transverse ef-
fective mass m, is determined® primarily by E,,

but for Ge, where m, is associated with the conduc-
tion-band edges at L, a better correlation should

be found with E,. Effects should also be found as-
sociated with longitudinal effective masses ;.
Unfortunately, there are two contributions to the
latter in each crystal, associated with two remote
levels, and these two contributions tend to cancel,
leaving m/m, close to 1 in both cases. Thus, analy-
sis of chemical trends of donor binding energies’
E!(X) is intrinsically more complicated than is
analysis of trends in Ef(X). Moreover, because of
certain selection rules associated with the neighbor-
hood of X, the g shifts of donors in Si are very small
and require elaborate analysis,?* while g shifts of
donors in Ge have not been reported.

On the basis of the information available for donors
alone, it appears that no conclusive analysis can be
made. However, if one accepts the qualitative con-
clusions of our analysis of Ef(X) and g(X) for ac-
ceptors, then we should look for chemical trends
in E, (to describe m, effects in Si) and E, (to de-
scribe m, effects in Ge). As for m,, the nearest
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levels of symmetry A,(Si) or A,(Ge) which contri-
bute to this factor connect with I'; (s symmetry).
Only I'; in the conduction band should shift appreci-
ably with X, and its trend may parallel that of I's,
although little is known about this point at present.
Should this be the case, it is easy to see that as one
proceeds from lighter to heavier impurities, the
trends in m, and m; will have opposite sign, because
the former is influenced most strongly by a nearby
valence band of lower energy and the latter most
strongly by a nearby conduction band of higher en-
ergy. This would also account for the observed
minimum in E¥(X)- E§ at X =Sb.

Chemical trends in acceptor binding energies in
GaP similar to those of acceptor binding energies
in Si and Ge have been noted. 2® Divalent acceptors
(Mg, Zn, Cd) may be introduced on the Ga sites,
and tetravalent ones (C, Si, Ge) on the P sites. A
striking feature of the data is that E¢(Ge) — E%(Si) is
about 100 meV, while E;(Zn) - E;(Mg) is only 10
meV. From an EMA viewpoint, the holes spend
about 70% of the time on the P sublattice and about
30% on the Ga sublattice. Thus, a ratio of chemical
shifts of 2:1 might be expected, compared to the
ratio of 10:1 which is actually observed. This is
the kind of problem for which a complete phase-
shift analysis (of the kind sketched in Sec. VII)
would be valuable.
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